

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA

DEPARTMENT OF MECHANICAL ENGINEERING

FIRST SEMESTER EXAMINATIONS

2018/2019 ACADEMIC SESSION

COURSE: MEE 409 – Heat Transfer II (3 Units)

CLASS: 400 Level Mechanical Engineering

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Answer any FIVE questions

HOD'S SIGNATURE

Date: March, 2019

Question 1 (Fundamentals of Heat Transfer)

- a. (i) What is the basic requirement for heat transfer (ii) List any four (4) important applications of heat transfer [5 Marks]
- b. The modes of heat transfer are based on some laws, classify and list the laws under each.

 [3 Marks]
- c. Differentiate between conduction and convection heat transfer in terms of their heat transfer mechanisms. [2 Marks]
- d. The wall of an industrial furnace is constructed from 0.15-m-thick fireclay brick having a thermal conductivity of 1.7 W/m.K. Measurements made during steady state operation reveal temperatures of 1400 and 1150 K at the inner and outer surfaces, respectively. What is the rate of heat loss through a wall that is 0.5 m by 1.2 m on a side? [2 Marks]

Question 2 (Heat Transfer by Convection)

- a. Differentiate between the following:
 - (i) Forced and Natural Convection (ii) External and Internal convection [6 Marks]
- b. Why is convective heat transfer coefficient usually higher in Forced than Natural convection? [2 Marks]
- c. An electric resistance heater is embedded in a long cylinder of diameter 30 mm. When water with a temperature of 25°C and velocity of 1 m/s flows crosswise over the cylinder, the power per unit length required to maintain the surface at a uniform temperature of 90°C is 28 kW/m. When air, also at 25°C, but with a velocity of 10 m/s is flowing, the power per unit length required to maintain the same surface temperature is 400 W/m. Calculate and compare the convection coefficients for the flows of water and air. [4 Marks]

Question 3 (Convection-Pattern of Flow and Boundary Layer)

a. Briefly explain the classifications of turbulent boundary layers

[3 Marks]

b. Differentiate between the following:

- (i) Viscous and inviscid flow (ii) Compressible and Incompressible flow (iii) Steady and Transient flow (iv) No-slip and No-temperature-jump condition
- c. A tube 45 mm diameter and 3.2 m long is used to convey water flowing at a velocity of 0.78 m/s. If the mean water temperature is 50°C, determine the heat transfer coefficient and the transfer rate when the wall is isothermal at 70°C. For water at 50°C, take k=0.644 W/m.K, $v = 0.554 \times 10^{-6}$ m²/s and prandtl number, Pr =3.55. Assume Dittus and Boelter, [3 Marks] Nusselt number (Nu) = 0.023Re^{0.8}Pr^{0.4}.

Question 4 (Convection Differential Equations)

a. What is the difference between Couette and Poiseuille flow?

12 Marks

- b. Consider an incompressible, steady state two-dimensional Couette flow for which the moving plate is maintained at a temperature (T_L) and speed (U) of 32° C and 12 m/s, respectively. The temperature of the stationary plate (T₀) which is kept at a distance L of 3 mm from the moving plate is 8°C. If the fluid is engine oil, determine:
 - The appropriate form of continuity equation i.
 - The velocity distribution between the plate ii.
 - The temperature distribution between the plates iii.
 - The surface heat flux to each of the plates iv.
 - The maximum temperature of the engine oil. Neglect the body force and internal ٧. [10 Marks] energy generation.

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + v \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right] + F_x$$

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \frac{k}{\rho c_p} \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right] + \frac{1}{\rho c_p} (\phi + q^1)$$

$$\phi = \mu \left(2 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial z} \right)^2 \right] + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^2 \right)$$

Properties	of lic	uids
------------	--------	------

Properti Temp. T, *C	Density	Specific Heat c, J/kg · K	Thermal Conductivity k, W/m · K	Thermal Diffusivity α , m²/s	Dynamic Viscosity µ, kg/m - s	Kinematic Viscosity ν, m²/s	Prandtl Number Pr	Volume Expansion Coeff. β, 1/K
-	CALLED STATE OF THE STATE OF TH		The second secon	Engine Oil	(unused)			
0 20 40 60 80 100 120	899.0 888.1 876.0 863.9 852.0 840.0 828.9 816.8	1797 1881 1964 2048 2132 2220 2308 2395 2441	0.1469 0.1450 0.1444 0.1404 0.1380 0.1367 0.1347 0.1330 0.1327	9,097 × 10 ⁻⁸ 8,680 × 10 ⁻⁸ 8,391 × 10 ⁻⁸ 7,934 × 10 ⁻⁸ 7,599 × 10 ⁻⁸ 7,330 × 10 ⁻⁸ 7,042 × 10 ⁻⁸ 6,798 × 10 ⁻⁸ 6,708 × 10 ⁻⁸	3.814 0.8374 0.2177 0.07399 0.03232 0.01718 0.01029 0.006558 0.005344	4.242×10^{-3} 9.429×10^{-4} 2.485×10^{-4} 8.565×10^{-5} 3.794×10^{-5} 2.046×10^{-5} 1.241×10^{-5} 8.029×10^{-6} 6.595×10^{-6}	46,636 10,863 2,962 1,080 499.3 279.1 176.3 118.1 98.31	0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070

Question 5

a. Consider the control volume shown for the special case of steady-state conditions with v =0, T=T(y), and $\rho = \text{const.}$ (i) Derive the x-momentum equation and simplify it as much as [8 Marks] possible. (ii) Prove that u = u(y) if v = 0 everywhere.

$$y, v = p - \frac{\partial y}{\partial y} dy$$

$$- \frac{\partial y}{\partial x} dx - \frac{\partial p}{\partial x} dx$$

b. The heat transfer coefficient h(W/m²K) in forced convection is influenced by the tube diameter D(m), fluid velocity u(m/s), and fluid properties such as density p (kg/m3), dynamic viscosity $\mu(Ns/m^2)$, thermal conductivity k (W/mK) and specific heat c_p (J/kgK). Find the functional expression for forced convection heat transfer between a fluid through a tube and its wall using either Rayleigh or Buckingham's Pi approach.

Question 6 (Heat Exchangers)

[2 Marks]

What are heat exchangers?

[3 Marks]

b. Briefly explain the mechanisms of heat exchangers

c. List the methods required in the analysis of heat exchangers

[2 Marks]

d. A counter-flow double-pipe heat exchanger is to heat water from 20°C to 80°C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water available at 160°C at a mass flow rate of 2 kg/s. The inner tube is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m² · °C, determine the length of the heat exchanger required to achieve the desired heating. Take the specific heats of water and geothermal fluid to be 4.18 and 4.31 kJ/kg.°C, respectively. [5 Marks]

Hint: $\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1/\Delta T_2)}$; $\dot{Q} = UA_s \Delta T_{lm}$

Question 7 (Radiation)

a. Define the following? (i) Radiation (ii) Blackbody

[4 Marks]

b. State Planck's Law

[2 Marks]

c. Consider a 20-cm-diameter spherical ball shown in fig. Q6(c) at 800 K suspended in air as shown. Assuming the ball closely approximates a blackbody, determine: (a) the total blackbody emissive power, (b) the total amount of radiation emitted by the ball in 5 min, and (c) the spectral blackbody emissive power at a wavelength of 3 µm. [6 Marks]